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In Part 1 [Knop, Palmer & Robinson (1975). Acta Cryst. A31, 19-31] arrangements of point charges at 
the vertices of polyhedra of cubic and icosahedral symmetry were described which produce a zero 
electric-field gradient (ZEFG) at a reference point s0(0, 0,0). Further infinite classes of ZEFG config- 
urations have now been identified, among them regular polygons having particular metric properties 
relative to So, and combinations of such polygons. Any ZEFG configuration of charges on a sphere can 
be generated by combining suitable irreducible (minimal) ZEFG sets of charges. The numbers `1(n) of 
irreducible ZEFG sets of n equal charges of the same sign on a sphere are known only for n < 4: `1(1)= 0, 
.1(2) =0, .1(3)= 1 (any three vertices of a regular octahedron, no two forming a centrosymmetric pair), 
and .1(4)= 3 (any four vertices of a cube, no two forming a centrosymmetric pair). 

For n discrete charges having values uc and Cartesian 
coordinates (x,,y,z~) to produce a zero electric-field 
gradient (ZEFG) at point so(0,0,0) the electric-field 
gradient tensor EFG must be a null matrix (cf. part I, 
Knop, Palmer & Robinson, 1975). For a set of unit 
charges of equal sign situated on a sphere of unit 

2 2 radius with centre at So, x~ +y,  +z~ z= 1, the E F G =  (0) 
condition may be written as 

fxl Yl zl + 

I (xx> Yl .Yn =(n/3) (1) 
zl . z,, 

or, in an extended form, as 

(3x~-1)=  ~ (3y~-1)=  ~ (3z/2-1)=0 
1 1 1 

o r  

~x21=~yl=~zl=nl3 (1) 
1 l 1 

~ x~y~= ~ x~z~= ~ y~zi=O . (2) 
1 1 I 

In part I we have shown that conditions 1 and 2 are 
satisfied by sets of charges which are minimum subsets 
5°j of sets 5e of vertices of centrosymmetric polyhedra 
of cubic and icosahedral symmetry inscribed in the 
unit sphere, and by sums and combinations of such 
subsets. In the present paper we describe further infi- 
nite classes of ZEFG configurations. 

Unit charges on a unit sphere 

Consider n like unit charges on the unit sphere located 
at the vertices of a regular n-gon in a plane parallel to 
the equatorial (xy) plane. The coordinates of this set 

of point charges are [x cos ( i -  1)~, x sin ( i -  1)e, z], 
i=  1 ,2 , . . .  ,n, e=2n/n. This set satisfies the ZEFG con- 
ditions 1 and 2 at so: 

(1) ~ ( 3 x ~ - l ) = 3 x  2 ~ cos2(i-1)~=½n(3x2-2), 
IL 1 

(3y~- 1)=3x z ~ sin z ( i -  1)c~=½n(3x2-2), 
1 1 

~ (3z z -  1) = n ( 3 z  z -  1) ; 
1 

(2) ~ xiyi=½x 2 ~ sin 2( i -1)c~=0,  
1 1 

• xtz = z ~ cos ( i -  1)c~= 0 ,  
1 1 

• y~z= z ~ sin (i-1)a=O . 
1 1 

Setting ½n(3xZ-2)=0 and n(3z z -  1)= 0, we have x =  
+ l/(3z), z =  + 1/(½), and x~+y~+z~=xZ[cos z ( i - 1 ) ~ +  
sin 2 ( i -  1)7] +z2= 1; hence the ZEFG conditions are 
satisfied for any n>3.  Thus regular n-gons of unit 
charges inscribed in a circle of radius l/(~-) on a unit 
sphere constitute an infinite class of ZEFG solutions 
of axial symmetry. 

For n = 3 and 4 the n-gons are the face of a regular 
octahedron and the face of a cube respectively, and 
hence solutions of cubic symmetry (ZEFG configura- 
tions No. 1 on the octahedron and cube, Table 7 of 
Part 1). 

Since a regular n-gon inscribed in a circle of radius 
1/(~) is a ZEFG configuration, any combination of 
such polygons is a ZEFG configuration, and the values 
of n need not be the same. Some such combinations 
with the polygons in special relationship can be singled 
out: 
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(3) Combine an nl-gon (x~,yl, z~) with an n2-gon 
(xz,yz, z2) in parallel planes. To satisfy the Z E F G  con- 
ditions, 

½n~(1 - 3z~) + ½nz(1 - 3zz 2) =0 ,  

i.e. 

nlz~ +nzz~=(nl +n2)/3. 

(3a) ni = n2 = n, z~ = - z2: two n-gons in parallel 
planes symmetric about  So. Since the rotat ional  dis- 
placement of  the two n-gons relative to each other 
does not  matter,  any n-gonal prism of symmetry (7, in- 
scribed in a circular cylinder of a height-to-radius 
ratio equal to 1/2 is a Z E F G  configuration. F rom an 
infinity of skew prisms C, one can single out the infinite 
class of right n-gonal prisms D,h and antiprisms D,a. 
The cube is a solution of symmetry D4hcOh (i.e. 
4 / m m m c m 3 m ) ,  the octahedron is a solution of sym- 
metry D3d ~ On (i.e. 3m c m3m). 

Combining such prisms and antiprisms produces 
further Z E F G  configurations, some of them belonging 
to the cubic and icosahedral classes. For  example, a 
combinat ion of three cubes [ + 1/(2),0, + 1/(½); etc.], 
[ + 1/(~3-), + 1/(1),0; etc.], [ + 1/(½), + 1/(~),0; etc.] pro- 
duces a t runcated octahedron, a Z E F G  configuration 
of symmetry m3m. 

(3b) nl, n2, zx=z2: a regular n~-gon and a regular 
n2-gon inscribed in the same circle, of radius t/(3z), and 
rotated through an arbi t rary angle relative to each 
other. This generates an infinite class of Z E F G  (nl + 
nz)-gons. For  n~ = nz = n and a displacement angle 2z~/n 
a regular 2n-gon results, or otherwise a 2n-gon having 
n pairs of vertices. 

(3c) n~, n,, z~ = - z 2 :  in general, irregular polyhedra 
with parallel basal planes. When nz = knl, (nl + nz + 2)- 
hedra of symmetries C,o and Cn are possible. 

(3d) n l=n2,  z l = - z 2 "  z t =  -t- 1/(.½), as under (3a). 
(3e) z2= + 1 requires 2n2<nl.  But if z2= + 1, the 

n2-gon is reduced to a point  at the pole, hence n2 = 1, 
n~ > 2. This corresponds to an infinite Z E F G  class of 
n-gonal pyramids defined by the vertex (0, 0, 1) and by 
x = [(2n + 2)/3n] 1/2, z = + [ ( n -  2)/3n] 1/2. The limiting 
values xoo and zoo for n - +  oo are 1/(2)and + 1/(½)re- 
spectively, i.e. the effect of  the charge at (0,0, 1) dis- 
appears and the limiting configuration is the above 
cylinder with n~=n2, z ~ = - z 2 ,  defined by the two 
circles of circumference s = 2zt 1/(2) and uniform charge 
density dn/ds = 1. 

For  n~ = 3, the solution with zl =½ is equivalent to 
configuration No. 2 (Cao-3m) and with z l = - ½ ,  to 
configuration No. 3 (Td--43m) on the cube (,Table 7, 
Part  1). 

(3f)  zl = 0 requires n~ < 2n2. When nl = n2 = n, x2 = 
+ 1/(½), z2= + 1/(2); with the two n-gons properly 
oriented a truncated pyramid of symmetry C,o results. 
When n2 = 1, n~ < 2; taking nl = 2, z2 = + 1. Because of 

+y~ = 1 and rotat ional  indefiniteness one may choose 
x~= 1/1/2, whence z l =  + 1/1/2. This solution defines a 
face of a regular octahedron. 

(4) Combine an nl-gon (xl,yl, zl) with two nz-gons 
(xz,yz,+Z2) in parallel planes" nxz~+2nzz~=(nl+ 
2n2)/3. A special case with nl = 6, nz = 3, zx =0 ,  is the 
cuboctahedron On. 

(4a) n~=n2=n, z l = 0 :  Xz = + 1/I/2, Zz = + 1/1/2. De- 
pending on the relative orientation of the n-gons, this 
combinat ion yields a truncated n-gonal bipyramid or a 
right n-gonal prism augmented on all vertical faces. 

(4b) zl = 0, z2 = 1 : 2n2 = (nl + 2nz)/3, nl = 4nz. How- 
ever, n2 = 1 when z2 = 1, hence a regular octahedron is 
the only solution of this type. 

(4c) Combine an n-gon (xl,y~,zO with a charge at 
(0,0,1) and an n-gon (xz,yz,  z2)" 2 2 Z~ + zz=-}--(2/3n). 
When z l = 0 ,  z~= 3z-(2/3n). 

Obviously a large variety of further types of  Z E F G  
configurations can be obtained by combining the 
regular Z E F G  polygons, some of them of high symme- 
try, but a general discussion of these possibilities would 
be out of place here. 

Combination to centrosymmetric arrangements of 
maximum symmetry 

Whenever a combinat ion of Z E F G  polygons has a 
centre of symmetry at So, the consti tuent polygons 
correspond to the 5ej Z E F G  subsets discussed in par t  
I and the 5: j  + 5 : ]  sums have the properties associated 
with self-duality. For  example, two square pyramids 
5:1 and 5:~ described under (3e) can be combined to 
a bicapped tetragonal prism 5a1+5 : [  ' of symmetry 
O4h , with vertices (0,0, _+ 1), []/(-~),0, _+ 1/(-~); etc.]. Any 
set of five vertices of this polyhedron,  no two of them 
related by the centre of symmetry,  will be a Z E F G  
configuration and thus a new 5:~ subset. The bicapped 
prisms, bicapped antiprisms, and 2n-gonal bipyramids 
are among the more important  classes of eentrosym- 
metric arrangements.  The results for unequal charges 
discussed in part  I can be applied in an analogous 
manner.  

The enumerat ion principle for self-dual configura- 
tions (e l  part  I) can be applied to any such centro- 
symmetric Z E F G  arrangement  in the same manner  as 
has been described for the cubic and icosahedral sym- 
metries. For  the bicapped tetragonal prism O4h , for 
example, the cycle index Z is that  of  a bicapped cube 
of symmetry D4h (Knop, Barker & White, 1975): 

Z=_~_d(t~o + 2t~t~ + 3t~t~ + 3szt 214 
+ 2s3t2z + 2s[t] + s 6 2 sz + 2tlt2). 

Setting sk = 0 and tk = 1/2 yields N1 = 6 for the number  
of distinct self-dual 5°j subsets (up to rotat ion and 
reflexion). 

Irreducible ZEFG sets of unit charges on a unit sphere 

Any Z E F G  configuration of n unit charges of  equal 
sign is the sum of irreducible (minimal) Z E F G  sets 
5:j .  The number  of distinct (up to rotat ion and reflex- 
ion) irreducible Z E F G  sets 3(n) corresponding to a 
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given n is not known at present for n > 4. For n = 2 no 
ZEFG configuration exists in real E a space. For n = 3, 
placing one charge at (0,0, 1), z~+z~=0, whence z2= 
z3 =0  and, if x2 = 1, yz--=Xa=0 and ya= _+ 1 up to rota- 
tion, i.e. any orthogonal triplet of radius vectors of 
unit length is a solution and no other class of solutions 
exists. A triplet of this kind defines a subset 5:1 of 
three vertices of an octahedron O~-m3m, so that J(3)= 
1 and the irreducible ZEFG set belongs to the cubic 
class described in part I, J(3)=N1 (octahedron). 

For n=4 ,  choosing x~=y~=x2=O, z l = l ,  solving 
equations (1) and (2) and transforming the coordinates 
yields ( + [/3/3, _+ ]/313, _+ V'3/3), i.e. four vertices of the 
cube, no two forming a centrosymmetric pair. This 
solution is unique and identical with the bicapped 
trigonal antiprism obtained by combining two trigonal 
pyramids of (3e). It corresponds to J(4) =N~(cube)-- 3. 

For n_> 5 the problem of determining J(n) is diophan- 
tine and for larger values of n probably intractable. 
For n = 6, for example, the ZEFG configurations Nos. 
1 and 4 on the icosahedron (el Table 7 of Part 1) are 
pentagonal pyramids of (3e) defined by (2/1/5,0, +_ 1/ 
l/5; etc.) and (0,0, 1); Nos. 2 and 3 consist of equilateral 
triangles at heights zl and + z2, z~ + z22 = a z [cf (3)]. The 
ZEFG configuration No. 2 on the cuboctahedron cor- 
responds to two equilateral triangles at heights 1/(2) 
and 0, as under (3f), but Nos. 1 and 3 seem to be irre- 
ducible relative to 1 and 4. The regular hexagon at 
z =  + 1/1/3 is a special class of two concentric equila- 
teral triangles combined to give D6~ symmetry ((76o 
relative to So). 

Combinations producing multiple charges 

k congruent ZEFG n-gons of unit charges inscribed 
in the same circle may be rotated in their own plane 
so as to produce coincidence of the k sets of vertices. 
This would be equivalent to having a ZEFG n-gon of 
k-tuple charges. Similarly, k irreducible orthogonal 
triplets of unit charges on the unit sphere can be com- 
bined in such a way that one vertex is placed in (0,0, 1) 
and is common to all k triplets, no other vertices co- 
inciding. A ZEFG configuration of 2k + 1 charges will 
result, 2k of them unit charges and one k-tuple. In this 
manner one can generate an infinite set of ZEFG con- 
figurations containing multiple charges. 

Embedding in three-dimensional lattices 

In contrast to the ZEFG configurations on cubic 
polyhedra, the noncubic ZEFG configurations de- 
scribed in this paper cannot be embedded in crystallo- 

graphic lattices to give ZEFG structures, even when 
the point-group symmetry of the configuration is crys- 
tallographic and therefore admissible as site symmetry. 
Not only must the particular metric properties of the 
noncubic and nonicosahedral ZEFG configurations be 
preserved: even if the dimensions of the lattice satisfy 
this requirement, the charges at lattice points not be- 
longing to the ZEFG configuration but related by 
translation will violate the ZEFG condition at the 
reference point so of the configuration. The ZEFG 
condition could be approximated, locally, if the dis- 
tances of the charges external to the ZEFG configura- 
tion were sufficiently great to produce only a small 
contribution to the EFG at So, as a result of the EFG 
dependence on the inverse cube of distance. However, 
this would be an exceptional case. 

Effect of distance from So 

If unit charges outside the unit sphere are considered, 
the effect of the distance r~ = [(x~+y2+z2)l/21 must be 
included. The ZEFG conditions 1 and 2 then become 

rF3(3x~2-1)=~r73(3y'~2-1)=~ ri-3(3z;2-1)=O (3) 
i i i 

~, ri-3x~y;= ~, rFax;z;= ~ ri'ay;z'~=O, (4) 
i l t 

where x't =xJri etc. In the simplest case, that of k sets 
of charges on concentric spheres centred at So, the 
results obtained above for ZEFG configurations on 
the unit sphere hold but must be scaled by rk. 

An interesting result follows from the limiting values 
xoo and zoo under (3e). The two parallel circles of radius 
]/(2) on the amit sphere at z=  + 1/(1) define a conical 
surface generated by a straight line passing through 
so and forming an angle ~0=arc cos l/(½) with the z 
axis. Any charge distribution on this cone rotationally 
symmetric about the cone axis, will produce a ZEFG 
at So. The angle ~0 is in fact the tetrahedral angle 
109°28'14 ''" 
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